Jet Shapes using MidPoint (II)

Mario Martinez (I FAE-Barcelona)

QCD Meeting 19th March 2004

Outlook

- Event Selection
- Jet Shapes (Raw)
- Corrections to Hadron Level
- Syst ematics
- Final Results

Event Selection

- Using MidPoint Algorithm (R=0.7) (merging at 75%)
- Using all Jet Dat a before Shut down (~200 pb-1)

```
- J5 (for pt > 30 GeV)
```

- J20 (for Pt > 45 GeV)
- J50 (for Pt > 70 GeV)
- J70 (for Pt > 95 GeV)
- J100(for Pt > 130 GeV)

Based on Monica's Studies

- Selection Cuts
 - At least one central jet (0.1 < |Y| < 0.7) with Pt> 30 GeV
 - MET_significance < 3.5 GeV^-1/2
 - $|V_z| < 60 \text{ cm}$
 - N(vxt) = 1
- Comparison DATA (5.3.1pre4) with MC Pythia/ Herwig (4.9.1)

Jet Shapes using COT (Ia)

Jet Shapes using COT (Ib)

Jet Shapes using COT (Ic)

Jet Shapes using COT (Id)

Jet Shapes using CAL (Ia)

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N_{jet}} \frac{\sum P_T^{towers}(r \pm \Delta r / 2)}{\sum P_T^{towers}(0, R)}$$

Jet Shapes using CAL (Ib)

r/R

r/R

Jet Shapes using CAL (Ic)

Jet Shapes using CAL (Id)

Jet Shapes vs Herwig (Ia)

Jet Shapes vs Herwig (Ib)

r/R

Jet Shapes Hadron vs Detector (Ia)

Jet Shapes Hadron vs Detector (Ib)

$$\rho(r) = \frac{1}{\Delta r} \frac{1}{N_{jet}} \frac{\sum P_T(r \pm \Delta r / 2)}{\sum P_T(0, R)}$$

Systematic Uncertainties

- Energy Scale of Jets (+ 5%)
- Unfolding using Herwig instead of Pythia
- Simulation (difference on COT/CAL in DATA and MCratio removes the physics...remains possible defects on simulation...

- Additional Checks
 - Independent with Inst. Luminosity
 - No affected by MidPoint reported bug

Systematic Uncertainties (Ia)

Energy Scale Uncertainty (5 %)

Systematic Uncertainties (Ib)

Uncertainty (HERWIG vs PYTHIA) Unfolding

Systematic Uncertainties (Ic)

Uncertainty (Simulation)

Uncertainty (Simulation)

Total Uncertainties (I)

Uncertainties

Final Measurement (I)

Final Measurement (Ib)

Integrated Jet Shape Definition

Same procedure as in the differential case

correction to hadron level (pythia)

Integrated Jet Shape Definition

Same procedure as in the differential case

Uncertainties

Same procedure as in the differential case

Same procedure as in the differential case

Evolution with transverse Pt

Comparison with NLO pQCD would allow us to measured the coupling (module R_sep)

Plans

- Ready for Preblessing in two weeks
 - Still a bit of work to reduce systematics due to MC
 - Possible extension to ~400 GeV jets
 - Use of latest jet corrections (extended to higher pt)
- A complet e CDF not e on t he way
- If possible comparison with NLO pQCD....
- Precise measurements very useful for future MC tuning...let's publish it now!
- Pythia Tune A makes a great job on jet shapes

This document was created with Win2PDF available at http://www.daneprairie.com. The unregistered version of Win2PDF is for evaluation or non-commercial use only.